Skip to main content

Getting Started with Agents

SimplerLLM now includes a powerful Agent Builder that allows you to create AI agents that can use tools, maintain memory, and generate structured responses.

What are Agents?

Agents are AI systems that can:

  1. Understand user requests
  2. Decide what actions to take
  3. Use tools to gather information or perform tasks
  4. Generate helpful responses

The SimplerLLM Agent Builder provides a flexible framework for creating agents that leverage the existing LLM and tools functionality.

Basic Usage

Here's a simple example of creating and using an agent:

from SimplerLLM.language import OpenAILLM, LLMProvider
from SimplerLLM.agents import Agent
from SimplerLLM.tools.serp import search_with_duck_duck_go

# Create an LLM instance
llm = OpenAILLM(
provider=LLMProvider.OPENAI,
model_name="gpt-4o",
temperature=0.7
)

# Create an agent
agent = Agent(llm=llm)

# Add a search tool
agent.add_tool(
name="web_search",
func=search_with_duck_duck_go,
description="Search the web for information",
parameters={
"query": "The search query string",
"max_results": "Maximum number of results to return (default: 5)"
}
)

# Run the agent
response = agent.run("What were the major tech announcements this week?")
print(response)

Key Components

Agent Class

The Agent class is the core of the Agent Builder. It handles:

  • Maintaining conversation memory
  • Managing tools
  • Generating structured responses using LLMs
  • Executing tools based on agent decisions
agent = Agent(
llm, # LLM instance
memory=None, # Optional AgentMemory instance
tools=None, # Optional dictionary of tools
system_prompt=None, # Optional system prompt
verbose=False # Whether to print verbose output
)

AgentMemory

The AgentMemory class stores conversation history and other agent state:

memory = AgentMemory(max_tokens=4000)  # Approximate token limit

# Add messages
memory.add_user_message("Hello, agent!")
memory.add_assistant_message("Hello! How can I help you?")
memory.add_system_message("You are a helpful assistant.")

# Get messages
messages = memory.get_messages() # List of message dictionaries
history = memory.get_chat_history() # Formatted string of chat history

Adding Tools

You can add any function as a tool for the agent to use:

agent.add_tool(
name="tool_name", # Name the agent will use to call the tool
func=your_function, # The function to call
description="Description", # Description of what the tool does
parameters={ # Dictionary of parameter descriptions
"param1": "Description of parameter 1",
"param2": "Description of parameter 2"
}
)

Advanced Usage

Using ReliableLLM

You can use ReliableLLM for fallback support:

from SimplerLLM.language import OpenAILLM, GeminiLLM, ReliableLLM, LLMProvider

# Create primary and secondary LLM instances
primary_llm = OpenAILLM(provider=LLMProvider.OPENAI, model_name="gpt-4o")
secondary_llm = GeminiLLM(provider=LLMProvider.GEMINI, model_name="gemini-pro")

# Create a ReliableLLM instance
reliable_llm = ReliableLLM(primary_llm, secondary_llm)

# Create an agent with the reliable LLM
agent = Agent(llm=reliable_llm)

Custom System Prompts

You can customize the agent's behavior with system prompts:

system_prompt = """You are an AI assistant specialized in data analysis.
When responding to queries:
1. Determine if you need to analyze data
2. Use Python code execution when calculations are needed
3. Provide clear explanations of your analysis
"""

agent = Agent(llm=llm, system_prompt=system_prompt)

Multiple Tools

Agents can use multiple tools to solve complex problems:

# Add a web search tool
agent.add_tool(
name="web_search",
func=search_with_duck_duck_go,
description="Search the web for information",
parameters={"query": "The search query string"}
)

# Add a Python execution tool
agent.add_tool(
name="execute_python",
func=execute_python_code,
description="Execute Python code and return the result",
parameters={"input_code": "Python code to execute"}
)

# Add a file saving tool
agent.add_tool(
name="save_file",
func=save_text_to_file,
description="Save text to a file",
parameters={
"text": "Text content to save",
"filename": "Name of the file to save to"
}
)

How It Works

The Agent Builder uses the following process:

  1. The user provides input to the agent
  2. The agent adds the input to its memory
  3. The agent creates a prompt that includes:
    • Available tools
    • Conversation history
    • Instructions for generating a structured response
  4. The agent uses the LLM to generate a structured response using Pydantic models
  5. If the response includes a tool call, the agent executes the tool and continues
  6. If the response includes a final answer, the agent returns it to the user

This process allows the agent to have multi-step reasoning and tool use capabilities.

Examples

Check out the examples directory for more detailed examples:

  • agent_example.py - Basic agent usage
  • advanced_agent_example.py - Advanced agent with multiple tools and ReliableLLM

Next Steps

  • Explore the different tools available in SimplerLLM
  • Create custom tools for your specific use cases
  • Experiment with different system prompts to customize agent behavior